Transneuronal Circuit Analysis with Pseudorabies Viruses.
Type
Our ability to understand the function of the nervous system is dependent upon defining the connections of its constituent neurons. Development of methods to define connections within neural networks has always been a growth industry in the neurosciences. Transneuronal spread of neurotropic viruses currently represents the best means of defining synaptic connections within neural networks. The method exploits the ability of viruses to invade neurons, replicate, and spread through the intimate synaptic connections that enable communication among neurons. Since the method was first introduced in the 1970s, it has benefited from an increased understanding of the virus life cycle, the function of viral genomes, and the ability to manipulate the viral genome in support of directional spread of virus and the expression of transgenes. In this article, we review these advances in viral tracing technology and the ways in which they may be applied for functional dissection of neural networks. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Retrograde infection of CNS circuits by peripheral injection of virus Basic Protocol 2: Transneuronal analysis by intracerebral injection Alternate Protocol 1: Transneuronal analysis with multiple recombinant strains Alternate Protocol 2: Conditional replication and spread of PRV Alternate Protocol 3: Conditional reporters of PRV infection and spread Alternate Protocol 4: Reporters of neural activity in polysynaptic circuits Support Protocol 1: Growing and titering a PRV viral stock Support Protocol 2: Immunohistochemical processing and detection Support Protocol 3: Dual-immunofluorescence localization.